过去的10个多月,以ChatGPT为代表的生成式AI浪潮席卷全球,无论是国际,还是国内,各大科技巨头都在积极布局生成式AI,甚至在浪潮的影响下,有不少中小企业也纷纷入局,意图乘着生成式AI的“东风”,帮助企业快速发展。
当一个个大模型如雨后春笋般涌现时,作为大模型重要底层支撑的“算力”也自然成为业界关注的焦点。
算力产业变革已经开始
对于算力产业,乃至整个数字产业而言,在大模型快速发展的当下,已经进入了变革的时代。以点看面,以数据中心为例,过去,数据中心服务器大多是以CPU为主,驱动移动互联网,以及企业数字化转型。
如今,在大模型等AI应用呈井喷式增长的背景下,对智能算力的需求愈发旺盛,越来越多的智算中心投产,也预示着数据中心将从以CPU为主的时代,转变为以GPU为主的智能算力时代。而以英伟达为代表的相关GPU价格及企业股票的增长也在印证这个趋势。
对此,青云科技总裁林源表示,随着一大批以AIGC为代表的AI应用的涌现,用户对智能算力的需求越来越大,“用户对算力的需求将是以前的10倍、100倍,甚至更多。”林源强调。
无疑,生成式AI和大模型的爆发,对于整个数字产业,以及企业数字化来说是颠覆性的。林源认为,在数字化时代的背景下,生成式AI和大模型的出现,为人类提供了一个可以提升效能的生产工具,并且伴随着这些技术的发展,让人工智能更贴近了用户侧,让人们使用人工智能的门槛越来越低。
不过,以目前我国算力产业发展来看,处于变革时代的算力产业还有诸多痛点亟待解决。现阶段,我国主要存在,东西部算力供需失衡、跨数据中心算力调度难、算力基础设施能耗大、企业利用算力成本高等问题。
我国算力产业发展的四大痛点
目前我国算力产业仍处于快速发展的初期阶段,上述提到的四个算力产业发展的问题,主要可以细分为四大痛点,分别是:
1、
算力资源分配不均/供需失衡
我国AI算力资源的分配存在着严重的不均衡现象。据统计,目前我国AI算力主要集中在一线城市和部分经济发达地区,而中西部地区的AI算力资源相对匮乏。这种现象导致了资源的浪费和效率的降低。
对于算力需求旺盛的东部地区,算力供不应求,而对于西部地区,算力资源充沛,却“无人问津”。这是目前制约我国算力产业整体高质量发展的关键问题之一。
而算力供需失衡不仅是我国亟待解决的痛点。国际数据公司(IDC)发布的报告显示,全球数据量每年增长约60%,但算力每年的增速仅为10%,这表明算力的供给与需求之间存在巨大差距。放眼全球,当前,全球范围内的算力需求持续增长,但算力供给却相对滞后。这种供需失衡现象在很大程度上限制了数据处理和人工智能等领域的发展。
2、
核心技术瓶颈
尽管我国在AI领域取得了显著的成果,但在算力调度技术方面仍存在一定的瓶颈。例如,我国在GPU计算、云计算等方面的技术积累相对较少,这使得我国在AI算力调度方面的能力相对较弱。
在算力调度中,效率是一个关键问题。然而,当前许多算力调度系统在处理大规模数据时,效率低下的问题普遍存在。这主要是由于系统架构、算法优化等方面的限制所导致的。