如今我们对 AI 的想象,其实一点都不新鲜:模拟人类专家的智能,上世纪 60 年代有“专家系统”;用自然语言与计算机直接交互,80 年代有“第五代计算机”;今天 AI 领域让我们惊叹的自主推理应答、自动识别文字图像,在你爸妈甚至爷奶年代都有相应的研究。
和今天不同的是,那时唱反调的人占了多数。
一位耶鲁大学的研究者在 1985 年指出了一种所有人最不希望看到的 AI 发展走向:五年内,日本和美国主导的人工智能项目无法兑现最初的承诺→政府和投资人撤资→创业公司倒闭→任何与 AI 相关的东西都无法获得融资→所有人立刻修改研究项目的名称避免与 AI 相关→AI 研究进入“寒冬”。
这位研究者是“真预言家”。回头看,80 年代以第五代计算机为代表的人工智能研究的确最终导向了寒冬。
谁知道我们今天是不是也在同样的路上呢?
“智能”该如何定义?
现在,人们大多将 1956 年召开的达特茅斯学术会议当作人工智能的开端,但那场大佬云集的会议实际只提出了“人工智能”这个概念,对于如何实现人工智能,并没有形成统一意见。
当时的研究者们对什么算“智能”的回答分三种:第一种认为智能的核心在于逻辑推理(符号主义);第二种则是试图通过复刻人脑的运行方式来复现智能(联结主义);第三种则注重模仿人类走路、跑跳、视觉、听觉、触觉等与环境的直接交互(行为主义,出现较晚)。
波士顿机器人走第三种路线|Giphy
三条路线的研究者们按照各自对“智能”概念的不同理解开始了分头行动。
第一种率先有动静。1965 年,一位叫费根鲍姆的计算机科学家和几位大学教授合作开发了一款名为 DENDRAL 的计算机程序,它可以根据化学分子在质谱仪中的数据,自动识别对应化合物的结构图——高考化学选修五最难的题也不敢这么考。
这类解决某一专业领域内问题的产品叫“专家系统”,它能为企业带来实在的商业回报:美国卡耐基·梅隆大学在 1978 年为 DEC 公司制造出 XCON 专家系统,系统能依据用户的定货需求,选出最合适的计算机硬件,帮助 DEC 公司每年节约 4000 万美元左右的费用;斯坦福研究院在 1981 年开发了 PROSPECTOR 专家系统用于矿产勘探,后来人们用它识别出了华盛顿州托尔曼山脉附近的一个钼矿床,这个矿床价值 1 亿美元。
那是专家系统的黄金年代:到 20 世纪 80 年代末,世界五百强中有一半的企业都在发展或维护专家系统,对专家系统的使用以每年 30% 的速度增长。