GPU巨头Nvidia发布了2023年二季度财报,其结果远超预期。总体来说,Nvidia二季度的收入达到了135亿美元,相比去年同期增长了101%;净利润达到了61亿美元,相比去年同期增长了843%。Nvidia公布的这一惊人的财报一度在盘后让Nvidia股票大涨6%,甚至还带动了众多人工智能相关的科技股票在盘后跟涨。
Nvidia收入在二季度如此大涨,主要靠的就是目前方兴未艾的人工智能风潮。ChatGPT为代表的大模型技术从去年第三季度以来,正在得到全球几乎所有互联网公司的追捧,包括美国硅谷的谷歌、亚马逊以及中国的百度、腾讯、阿里巴巴等巨头。而这些大模型能进行训练和推理的背后,都离不开人工智能加速芯片,Nvidia的GPU则是大模型训练和推理加速目前的首选方案。
由于各大科技巨头以及初创公司都在大规模购买Nvidia的A系列和H系列高端GPU用于支持大模型训练算力,这也造成了Nvidia的数据中心GPU供不应求,当然这反映到财报中就是收入和净利润的惊人增长。
事实上,从Nvidia的财报中,除了亮眼的收入和净利润数字之外,还有一个关键的数字值得我们关注,就是Nvidia二季度的数据中心业务收入。根据财报,Nvidia二季度的数据中心业务收入超过了100亿美元,相比去年同期增长171%。Nvidia数据中心业务数字本身固然非常惊人,但是如果联系到其他公司的同期相关收入并进行对比,我们可以看到这个数字背后更深远的意义。
同样在2023年第二季度,Intel的数据中心业务收入是40亿美元,相比去年同期下降15%;AMD的数据中心业务收入是13亿美元,相比去年同期下降11%。我们从中可以看到,在数据中心业务的收入数字上,Nvidia在2023年第二季度的收入已经超过了Intel和AMD在相同市场收入的总和。
这样的对比的背后,体现出了在人工智能时代,人工智能加速芯片(GPU)和通用处理器芯片(CPU)地位的反转。
目前,在数据中心,人工智能加速芯片/GPU事实上最主流的供货商就是Nvidia,而通用处理器芯片/CPU的两大供货商就是Intel和AMD,因此比较Nvidia和Intel+AMD在数据中心领域的收入数字就相当于比较GPU和CPU之间的出货规模。
虽然人工智能从2016年就开始火热,但是在数据中心,人工智能相关的芯片和通用芯片CPU相比,获得的市场份额增长并不是一蹴而就的:在2023年之前,数据中心CPU的份额一直要远高于GPU的份额;甚至在2023年第一季度,Nvidia在数据中心业务上的收入(42亿美元)仍然要低于Intel和AMD在数据中心业务的收入总和;而在第二季度,这样的力量对比反转了,在数据中心GPU的收入一举超过了CPU的收入。
这也是一个历史性的时刻。从上世纪90年代PC时代开始,CPU一直是摩尔定律的领军者,其辉煌从个人电脑时代延续到了云端数据中心时代,同时也推动了半导体领域的持续发展;而在2023年,随着人工智能对于整个高科技行业和人类社会的影响,用于通用计算的CPU在半导体芯片领域的地位正在让位于用于人工智能加速的GPU(以及其他相关的人工智能加速芯片)。
摩尔定律的故事在GPU上仍然在发生
众所周知,CPU的腾飞离不开半导体摩尔定律。根据摩尔定律,半导体工艺特征尺寸每18个月演进一代,同时晶体管的性能也得到大幅提升,这就让CPU在摩尔定律的黄金时代(上世纪80年代至本世纪第一个十年)突飞猛进:一方面CPU性能每一年半就迭代一次,推动新的应用出现,另一方面新的应用出现又进一步推动对于CPU性能的需求,这样两者就形成了一个正循环。