Nature刊登了纽约大学等机构的研究人员在人工智能领域最新突破,证明神经网络具有类似人类语言的泛化性能,再一次印证了AI发展的无限潜力!
35年来,认知科学、人工智能、语言学和哲学领域的研究人员一直在争论神经网络是否能实现类似人类的系统泛化。
具体来说,人们一直认为,AI无法像人类一样具有「系统泛化(systematic generalization)」能力,不能对没有经过训练的知识做到「举一反三」,几十年来这一直被认为是AI的最大局限之一。
最近,NYU和西班牙庞培法布拉大学的研究者首次证明——它可以!
他们在这个方向取得了里程碑式的突破,论文已经刊发在了Nature上。
论文链接:https://www.nature.com/articles/s41586-023-06668-3#auth-Brenden_M_-Lake-Aff1
研究人员提出了一种新的神经网络训练方法——MLC(Meta-Learning for Compositionality),能够大幅提高神经网络「举一反三」的能力,甚至能够超越人类!
人类之所以能够做到举一反三,快速掌握复杂语言的含义或者某种技巧,是因为人类天生具有「系统泛化」的能力。
举个例子,如果我们从未听过「秦始皇戴小红帽——赢到姥姥家了」这个短语,但知道「秦始皇叫嬴政」,知道「小红帽」的故事,就能理解这个歇后语,还能把它用在正确的地方。